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Hitotsubashi Univ. analysis: NP residual vs NP σ (c5++ POD, 2016.5 – 2017.4)
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LAGEOS NP residual vs NP σ from SATAN orbital analysis, 2014.9 – 2017.5

RMS



© NERC All rights reserved

Consider some causes of NP variability

1. Physical sampling variability of retroreflector array

2. Variability from sampling the distributions of returns

3. Background noise 

Examine performance of different data reduction schemes:
- simulated data
- empirical data 

Objectives
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1. Physical sampling variability

Task: Simulate laser pulses reflected off LAGEOS

We need: Reflectivity map for a single retroreflector
Array coordinates and clocking angles
System noise
Observation geometry
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Task: Simulate laser pulses reflected off LAGEOS

We need: Reflectivity map for a single retroreflector
Array coordinates and clocking angles
System noise
Observation geometry

Arnold D, Methods of calculating retroreflector-array transfer functions, 1978
Arnold D, Optical and IR transfer function of the LAGEOS retroreflector array, 1978

1. Physical sampling variability

Ray-tracing of a cube corner   reflectivity at all possible angles of incidence→
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Varghese T, Zagwodzki T, Oldham T, Hu S. Attempt to further 
enhance ranging accuracy to LAGEOS through de-convolution of 
the target response. 18th IWLR 13-0417, Fujiyoshida, Japan, 2013.

1. Physical sampling variability

For any given orientation, for all visible cube corners, compute incidence angle and retroreflector orientation  →
distances from origin, reflectivity x effective areas  array response→

Ray-tracing of a cube corner   reflectivity at all possible angles of incidence→

Task: Simulate laser pulses reflected off LAGEOS

We need: Reflectivity map for a single retroreflector
Array coordinates and clocking angles
System noise
Observation geometry

NORTH POLE
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LAGEOS responses vary substantially:

-response envelopes of different width 
and overall shape
-occasional multiple peaks
-late reflections at different positions and 
intensities

REFLECTIONS OFF LAGEOS AT SOME RANDOM ORIENTATIONS
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Assuming: an arbitrary LAGEOS orientation
insignificant satellite spin/tumble during ~1 hour

Compute instantaneous response for the orientations sampled over one pass

Incident beam orientation changes with satellite orbital motion and Earth rotation

LAGEOS surface sampled during a single pass

We can compute the response over a pass
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From the individual reflections we can compute the stability of different reflection points over a 
particular pass, e.g. first and average reflections

 reflectivity 
        x
effective area

 Time  c→ Time  →

 R

We can compute the response over a pass

1st reflection point

average reflection
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From the individual reflections we can compute the stability of different reflection points over a 
particular pass, e.g. first and average reflections

Incident beam 
passing over a 
germanium cube

 reflectivity 
        x
effective area

 Time  c→ Time  →

 R

We can compute the response over a pass

1st reflection point

average reflection
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Assuming a fixed, arbitrary LAGEOS orientation:

Compute responses for LAGEOS passes taken from one location over 6 months
Form 2 minute normal points from simulated data
Convolve NPs with system noise
Reduce data with several methods

4773 simulated NPs: enough to examine the statistics of the reduction results

Reduction schemes tested:
Herstmonceux scheme: 3σ iterative mean + Gaussian fit + 3σ

Gauss
 rejection

N-iterative means
Leading edge-based methods (Graz)

...and compute the response over many passes
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Plotting, on a pass basis, the computed reference points against RMS shows a correlation 
between the two quantities

RMS peak-to-peak > 2 mm
Ref. Point peak-to-peak ~3 mm

Pass reference point vs pass RMS

 RMS

 Ref. 
point

 (3 x Gauss 
reduction 
method)
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Individual NPs show a greater variability

RMS peak-to-peak ~4 mm
Ref. Point peak-to-peak >5 mm

NP reference point vs NP RMS

 RMS

 (Hx 3xGauss 
reduction 
method)

 Ref. 
point
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We can compare different reduction strategies; e.g. Gauss vs iterative means

NP reference point vs NP RMS

 RMS

 Ref. 
point

3xGauss
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We can compare different reduction strategies; e.g. Gauss vs iterative means

NP reference point vs NP RMS

 RMS

 Ref. 
point

3xGauss

2.5 x Iterative
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Similar performance, these methods are all very sensitive to changes in the shape of the 
distributions of detections

NP reference point vs NP RMS

 RMS

 Ref. 
point

3xGauss

2.5 x Iterative

2.2 x Iterative
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Leading edge methods?
Graz, a very similar station to Herstmonceux, does not show the Residual vs RMS correlation

slope for LARES
(no LE method is 
used?)

Hitotsubashi Univ. analysis: NP residual vs NP σ (c5++ POD, 2016.5 – 2017.4)
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Leading edge methods?
Graz, a very similar station to Herstmonceux, does not show the Residual vs RMS correlation

LE (-a, +b) = average of data within (LEHM – a, LEHM + b) cm

Kicharski D., Kirchner G., Koidl F. A method to calculate zero-signature satellite laser ranging normal points for millimeter 
geodesy – a case study with Ajisai. EPS, 2015
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3 x Gauss vs leading edge methods
LE (-a, +b) = average of data within (LEHM – a, LEHM + b) cm

NP reference point vs NP RMS

 RMS

 Ref. 
point

3 x Gauss
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3 x Gauss vs LE methods
LE (-a, +b) = average of data within (LEHM – a, LEHM + b) cm

NP reference point vs NP RMS

 RMS

 Ref. 
point

3 x Gauss

LE (-3, +2) cm
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3 x Gauss vs LE methods
LE (-a, +b) = average of data within (LEHM – a, LEHM + b) cm

NP reference point vs NP RMS

 RMS

 Ref. 
point

3 x Gauss

LE (-3, +2) cm

LE (-2, +2) cm
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3 x Gauss vs LE methods
LE (-a, +b) = average of data within (LEHM – a, LEHM + b) cm

NP reference point vs NP RMS

 RMS

 Ref. 
point

3 x Gauss

LE (-3, +2) cm

LE (-2, +2) cm

LE (-1, +2) cm
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Fixed clipping from leading edge method much more resilient to underlying NP variability
LEHM point also stable (not the best), but tricky to determine accurately with real data

NP reference point vs NP RMS

 RMS

 Ref. 
point

3 x Gauss

LE (-3, +2) cm

LE (-2, +2) cm

LE (-1, +2) cm

LEHM point
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M. Wilkinson: reduction of LAGEOS full-rate data using different clipping methods: optimal clipping level? Reliable 
LEHM determination from empirical distributions? Effect of individual cube corner signatures? Residual flattening 
methods?

Actual reflection point is unknown in real data, but LEHM – MEAN is an internal NP stability check

Averages of tighter leading edge clipping shown to perform better (LAGEOS, Ajisai and LARES tested)

Testing with real data

LEHM - MEAN

LE (-50, +75) ps

LE (-50, +150) ps

LE (-50, +250) ps

3 x Gauss
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Summarising:

Three effects that impact NP RMS have been considered

● Limited physical sampling of the LRA induces variability in the NPs reference points that explains a good part of 
what we see in the orbital analysis residuals

● Statistical sampling variability causes additional spread to both NP reference points and RMS, but does not 
greatly contribute to their correlation

● Background noise during daytime at very low return rate may stretch the distribution of NP RMS towards higher 
values (and lower reference points)

Other:

● LE-based reduction methods perform very well

● The practicalities involved in implementing alternative reduction methods, and their sources of error, have not 
been considered

● Different clipping methods require, of course, appropriate centre of mass values
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Thank you
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NP means and RMS values are correlated with those of the passes they belong to, as expected. However, the intra-pass 
variability is quite big. In the case of the means, in the vast majority of passes the range of NP means include the 
overall reference point mean

Pass RMS is therefore a poor predictor of NP means. Also, for both pass and NP data, we are seeing deviations from 
their average expected values, rather than biased estimates  not systematic error→
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